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Percolation threshold of a class of correlated lattices
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~Received 31 July 1997!

Investigations have been made of the percolation threshold of correlated site percolation lattices based on the
convolution of a smoothing function with random white noise as suggested by Crossley, Schwartz, and
Banavar. The dependence of percolation threshold on correlation length has been studied for several smoothing
functions, lattice types, and lattice sizes. All results can be fit by a Gaussian function of the correlation length

w, pc5pc
`1(pc

02pc
`)e2aw2

. For two-dimensional, matching lattices the thresholds satisfy the Sykes-Essam
relationpc(L)1pc(L* )51. @S1063-651X~97!04412-7#

PACS number~s!: 64.60.Cn, 05.40.1j
ng
th
in

we

rm

s

ce

un

-

e

r
si

ere
ns

s,
The
e.
l

ib-

ns-
ed

ss-
I. INTRODUCTION

A lattice model of a porous medium is formed by setti
up an algorithm that determines which lattice sites are in
pore space and which in the grain space. One way of do
this is to generate a random functionI (r ) and to choose a
threshold valueI T . Lattice sites for whichI (r )<I T are cho-
sen in the pore space while sites for whichI (r ).I T are
chosen in the grain space. Of course, one could equally
reverse the inequalities. WhenI (r ) @denotedI 0(r )# has val-
ues at each lattice site drawn from independent, unifo
probability distributions~random white noise!, the procedure
leads to the well known site percolation lattice. In this ca
there is a critical threshold valueI c such that forI T>I c the
pore space is connected across the system~percolates!, while
for I T,I c the pore space consists of disconnected pie
Associated with the critical thresholdI c , there is a critical
porositypc called the percolation threshold.

Recently, Crossley, Schwartz, and Banavar@1# have intro-
duced a model of a porous medium based on a random f
tion I (r ) that is the convolution of the random functionI 0(r )
and a smoothing functionK(r uw),

I ~r !5E K~r2r 8uw!I 0~r 8!d3r 8. ~1!

Sahimi @2# and Lin et al. @3# have used this model to repre
sent porous media while Blumenfeld and Torquato@4# have
investigated statistics for the model.

In the present paper, I report investigations of the dep
dence of the percolation threshold on correlation lengthw for
the Crossley-Schwartz-Banavar model. Crossley, Schwa
and Banavar considered two smoothing functions, Gaus
(G),

KG~r uw!5e2r 2/w2
, ~2!

and Laplace-Gaussian~LG!,

KLG~r uw!5@2614r 2/w2#e2r 2/w2
. ~3!

In addition, I have investigated the exponential (E),

KE~r uw!5e2r /w, ~4!
561063-651X/97/56~6!/6586~3!/$10.00
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stretched exponential~SE!,

KSE~r uw!5e2~r /w!0.5
, ~5!

and Lorentzian (L),

KL~r uw!5~11r 2/w2!21, ~6!

smoothing functions. Most of the simulations reported h
were done on square and cubic lattices. A few simulatio
were done on triangular and square 1-2~with first and second
neighbor connections! lattices. The lattice types, lattice size
and associated smoothing functions are listed in Table I.
lattice size is specified byN, the number of sites on an edg
A two-dimensional lattice hasN2 sites; a three-dimensiona
lattice hasN3 sites.

To set up a lattice the functionI 0(r ) was obtained by
calculating independent random numbers, uniformly distr
uted on the interval@0,1#, for each lattice site using theFOR-

TRAN library function RAN. The convolution ofI 0 with the
smoothing function was done using the fast Fourier tra
form @5#. Finally, the percolation threshold was determin
using the Hoshen-Kopelman algorithm@6–8#.

FIG. 1. Percolation thresholds for square lattices with a Gau
ian smoothing function.
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FIG. 2. Percolation thresholds for square lattices with an ex
nential smoothing function.

FIG. 3. Percolation thresholds for cubic lattices with a Gauss
smoothing function.

FIG. 4. Percolation thresholds for cubic lattices with an exp
nential smoothing function.
-
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TABLE I. Lattices and smoothing functions.

Lattice type N Smoothing function

Square 256,512,1024 G, LG, E, SE,L
Cubic 16,32,64 G, LG, E
Triangular 128 G,L
Square 1-2 128 G

TABLE II. Gaussian fit parameters for square and square
lattices.

Smoothing
function

pc
0 pc

` a

Gaussiana 0.5956 0.002 0.5056 0.002 0.4086 0.031
Gaussianb 0.4126 0.002 0.4806 0.002 0.3746 0.047
Laplace-
Gaussiana

0.5966 0.001 0.5096 0.002 0.2516 0.018

Exponentiala 0.5936 0.002 0.5086 0.002 0.4696 0.043
Stretched
exponentiala

0.5916 0.006 0.5126 0.005 1.096 0.36

Lorentziana 0.5926 0.002 0.5046 0.002 0.7206 0.079

aSquare lattice.
bSquare 1-2 lattice.

TABLE III. Gaussian fit parameters for cubic lattices with
Gaussian smoothing function.

N pc
0 pc

` a

16 0.3256 0.012 0.1586 0.007 0.636 0.16
32 0.3176 0.008 0.1366 0.005 0.586 0.09
64 0.3146 0.006 0.1176 0.005 0.476 0.06
` 0.310 0.106 0.44

TABLE IV. Gaussian fit parameters for cubic lattices with a
exponential smoothing function.

N pc
0 pc

` a

16 0.3256 0.004 0.1606 0.004 0.956 0.10
32 0.3166 0.004 0.1276 0.003 1.006 0.07
64 0.3106 0.006 0.1086 0.005 0.846 0.10
` 0.305 0.092 0.86

TABLE V. Gaussian fit parameters for cubic lattices with
Laplace-Gaussian smoothing function.

N pc
0 pc

` a

16 0.3306 0.009 0.1706 0.008 0.766 0.17
32 0.3186 0.008 0.1236 0.007 0.486 0.07
64 0.3126 0.007 0.1176 0.007 0.446 0.06
` 0.306 0.094 0.30
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II. RESULTS

Figures 1 and 2 show the dependence of the percola
threshold on correlation length for square lattices w
Gaussian and exponential smoothing functions. The res
for the other smoothing functions are similar. All results a
averages over ten trials. In all cases the percolation thr
olds for square lattices show no dependence on lattice s

The dependence on correlation length can be fit v
closely by a Gaussian function

pc5pc
`1~pc

02pc
`!e2aw2

. ~7!

The parameters associated with the different smoothing fu
tions are given in Table II. The results for the square 1
lattice can also be fit by Eq.~7! and the parameters are in
cluded in Table II. Figures 3 and 4 show the dependenc
the percolation threshold on correlation length for cubic l
tices with Gaussian and exponential smoothing functio
The results for the Laplace-Gaussian smoothing function
similar.

In the cubic case the percolation threshold depends
lattice size, presumably because of the smaller lattices
were used. Nevertheless, for each lattice size the depend
of percolation threshold on correlation length can be fit
Eq. ~7!. The parameters for the three smoothing functions
given in Tables III–V. Included in each table are extrap
lated values for an infinite lattice.

For triangular lattices, the percolation threshold is ind
pendent of correlation length. The best fits to the data g
for the Gaussian smoothing functionpc50.49760.004 and
for the Lorentzian smoothing functionpc50.49760.007.
These results can also be fit by Eq.~7! with pc

`5pc
0 .

III. DISCUSSION

For all of the lattices and smoothing functions report
here, the dependence of percolation thresholdpc on correla-
tion lengthw can be expressed by Eq.~7!. This functional
form appears to be universal, independent of lattice ty
smoothing function, and even of spatial dimension. If furth
studies confirm this relation, it would indicate that there a
very general features underlying correlated percolation,
tentially a very significant result.
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The parameters in Eq.~7! are not universal. The exponen
coefficient a depends on both lattice type and smoothi
function. The limiting percolation thresholdpc

0 depends on
the lattice type but, of course, not on the smoothing funct
since each smoothing function becomes a delta function
the limit w→0. For the square and cubic lattices, the limitin
percolation thresholdpc

` appears to be independent
smoothing function. This is not surprising since ea
smoothing function approaches a constant value of unity
w→`. In the two-dimensional lattices, there appears to b
weak dependence ofpc

` on lattice type. This will be dis-
cussed below.

We can get a better insight into the results by consider
the matching relation introduced by Sykes and Essam@9#,
@10# ~p. 211!, and@11#. Sykes and Essam show that for an
plane latticeL there is a ‘‘matching lattice’’L* such that

pc~L !1pc~L* !51. ~8!

The square and square 1-2 lattices are matching and the
angular lattice is self-matching.

The proof of these results does not depend on the
probabilities being independent@10# ~p. 213! so Eq.~8! also
applies to correlated lattices. Thus the convolution lattic
discussed in this paper must satisfy Eq.~8! for all w. For
percolation thresholds having the form of Eq.~7!, this im-
plies that the limiting valuespc

0 and pc
` satisfy Eq.~8! and

a(L* )5a(L). The values for the square and square 1-2
tices given in Table II satisfy these conditions to within com
putational errors. For a self-matching lattice, Eq.~8! implies
that pc51/2 and this holds for allw. Again the simulations
on the triangular lattices satisfy this condition to within com
putational error.

As noted above, the asymptotic valuepc
` appears to de-

pend weakly on lattice type for two-dimensional lattices. A
of the values ofpc

` are close to 0.5. However, all values o
pc

` for the square lattice are somewhat larger than 0.5 w
the value for the square 1-2 lattice is smaller than 0.5. Si
the values ofpc

` nevertheless satisfy Eq.~8!, it appears that
the deviations from 0.5 for the square and square 1-2 latt
are real.
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