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Percolation threshold of a class of correlated lattices
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Investigations have been made of the percolation threshold of correlated site percolation lattices based on the
convolution of a smoothing function with random white noise as suggested by Crossley, Schwartz, and
Banavar. The dependence of percolation threshold on correlation length has been studied for several smoothing
functions, lattice types, and lattice sizes. All results can be fit by a Gaussian function of the correlation length
W, pc= pf+(p2—p‘§)e‘ aw? Eor two-dimensional, matching lattices the thresholds satisfy the Sykes-Essam
relationp(L) +pc(L*)=1.[S1063-651X97)04412-7

PACS numbd(s): 64.60.Cn, 05.40kj

I. INTRODUCTION stretched exponentidSE),

A lattice model of a porous medium is formed by setting Kse(r|w) =g~ (1w (5)
up an algorithm that determines which lattice sites are in the '
pore space and which in the grain space. One way of doingnd Lorentzian I(),
this is to generate a random functib¢r) and to choose a o 21
threshold valud. Lattice sites for which (r)<I are cho- Ke(rlw)=(1+r%w?) "4, (6)
sen in the pore space while sites for whitfr)>1; are . , ) )
chosen in the grain space. Of course, one could equally wefimoothing functions. Most of the S|rr_1ulat|0ns repo_rted here
reverse the inequalities. Whéfr) [denotedio(r)] has val-  Were done on square and cubic lattices. _A few simulations
ues at each lattice site drawn from independent, uniforn{’€"e done on triangular and square (with first and second
probability distributiongrandom white noise the procedure neighbor c.onnect|or)$atpces. Thg lattice types, _Iattlce sizes,
leads to the well known site percolation lattice. In this case?Nd associated smoothing functions are listed in Table I. The
there is a critical threshold valug such that forl;=1, the  |atlice size is specified b, the number of sites on an edge.
pore space is connected across the sygfErrolatel while A two-dimensional lattice habl? sites; a three-dimensional

. 3 .
for I1<I, the pore space consists of disconnected pieceddttice hasN” sites. _ _
Associated with the critical threshold, there is a critical To set up a lattice the functiofy(r) was obtained by
porosity p.. called the percolation threshold calculating independent random numbers, uniformly distrib-
C . . . . .

Recently, Crossley, Schwartz, and Bandédhave intro- uted on the mtervgﬂO,l], for each lattice §|te usmg.th%DR-
duced a model of a porous medium based on a random fundRAN library functionRaN. The convolution off, with the
tion 1(r) that is the convolution of the random functibg(r) smoothmg'functmn was done using the fast Fourier trans-
and a smoothing functiok (r|w) form [5]. Finally, the percolation threshold was determined

’ using the Hoshen-Kopelman algoritH®—8].

I(r)=f K(r—r'|w)lo(r")d3’. (1) 0.60 . . ' .

Sahimi[2] and Linet al. [3] have used this model to repre- 0.58 o
sent porous media while Blumenfeld and Torqutbhave ® N-2%
investigated statistics for the model. O n~-si

In the present paper, | report investigations of the depen- 0.56 p @ N=1 1
dence of the percolation threshold on correlation lengfor e Gaussian Fit

the Crossley-Schwartz-Banavar model. Crossley, Schwartz,

© 054 f
and Banavar considered two smoothing functions, Gaussian =
(G),
052p
Ka(r|w)=e~""", @
. 0.50 |
and Laplace-GaussiahG), +
—[—6+4r2/w? 7r2/w2_ 0.48 2 2 A 2
Kig(rlw)=[—6+4r4/w?]e (3 0 y > 2 p p
In addition, | have investigated the exponentigl ( w
FIG. 1. Percolation thresholds for square lattices with a Gauss-
Ke(rlw)=e™"", (4) ian smoothing function.
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0.60 F—r—rvrrrryrvrrrrrrrTe TABLE I. Lattices and smoothing functions.
t\ ® N=256 Lattice type N Smoothing function
0.58 O N=512 1
Square 256,512,1024 G, LG, E, SE,L
N=1024 Cubic 16,32,64 G, LG, E
0.56 Gaussian Fit | Triangular 128 G,L

Square 1-2 128 G

0.54p

Pc

TABLE II. Gaussian fit parameters for square and square 1-2

052f lattices.
050F Smoothing p? (0% @
function
0.48 . Gaussiaf 0.595+ 0.002 0.505+ 0.002 0.408*= 0.031
0 1 2 3 4 5 Gaussiaf? 0.412+ 0.002 0.480+ 0.002 0.374*= 0.047

W Laplace- 0.596+ 0.001 0.509+ 0.002 0.251+ 0.018
FIG. 2. Percolation thresholds for square lattices with an eXpO_Gaus&aﬁ‘.
nential smoothing function. Exponentiaf?  0.593% 0.002 0.508+ 0.002 0.469+ 0.043

0.35 Stretched 0.591* 0.006 0.512+ 0.005 1.09* 0.36

) ’ ) exponentiaf
Lorentzian®  0.592* 0.002 0.504+ 0.002 0.720+ 0.079
N=16
0.30 o 1 33quare lattice.
0O N=3 bSquare 1-2 lattice.
N=64
0.25 L .
Gaussian Fits
s TABLE Ill. Gaussian fit parameters for cubic lattices with a
0.20 b Gaussian smoothing function.
N P2 Pe a
0.15}F 16 0.325+ 0.012 0.158+ 0.007 0.63+ 0.16
32 0.317= 0.008 0.136+ 0.005 0.58+ 0.09
64 0.314+ 0.006 0.117+ 0.005 0.47= 0.06
0.10
0 1 o 3 4 5 0 0.310 0.106 0.44
w
FIG. 3. Percolation thresholds for cubic lattices with a Gaussian
smoothing function. TABLE IV. Gaussian fit parameters for cubic lattices with an
0.35 T T T T exponential smoothing function.
0 ©
0.30 o N=16 | N pe 08 a
] N=32 16 0.325+ 0.004 0.160+ 0.004 0.95+ 0.10
+ + -+
0.25 | 0 N < 64 i 32 0.316=+ 0.004 0.127+ 0.003 1.00+ 0.07
64 0.310=* 0.006 0.108+ 0.005 0.84+ 0.10
Gaussian Fits 0 0.305 0.092 0.86
& 020
015} ) ) ) ) )
TABLE V. Gaussian fit parameters for cubic lattices with a
Laplace-Gaussian smoothing function.
010}
N Pe Pe a
0.050 p > 3 4 5 16 0.330= 0.009 0.170+ 0.008 0.76x 0.17
32 0.318+ 0.008 0.123+ 0.007 0.48+ 0.07
w 64 0.312+ 0.007 0.117+ 0.007 0.44+ 0.06
FIG. 4. Percolation thresholds for cubic lattices with an expo-« 0.306 0.094 0.30

nential smoothing function.
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Il. RESULTS The parameters in Eq7) are not universal. The exponent
Figures 1 and 2 show the dependence of the percolatioﬁone;{!g'r?nfrﬁedl.erfﬁ%ds c;r:cgr:polnatttr':is?g& a:jned esrr]r(lj(;og:]lng
threshold on correlation length for square lattices with unction. imiting p : P

Gaussian and exponential smoothing functions. The result@e lattice type but, .Of course, not on the smoothing fun_ct|o_n
for the other smoothing functions are similar. All results are>Nce gach smoothing function becomes a delta fun.ctllo-n n
averages over ten trials. In all cases the percolation thresﬁhe I|m|tyv—>0. For the swquare and cubic Iatt_|ces, the limiting
olds for square lattices show no dependence on lattice sizeP€rcolation thresholdp. appears to be independent of

The dependence on correlation length can be fit verpMoothing function. This is not surprising since each
closely by a Gaussian function smoothing function approaches a constant value of unity as

w—oo, In the two-dimensional lattices, there appears to be a
Pe= p°g+(pg_p§)e*awz_ (7)  weak dependence gf, on lattice type. This will be dis-
cussed below.
The parameters associated with the different smoothing func- We can get a better insight into the results by considering
tions are given in Table Il. The results for the square 1-2the matching relation introduced by Sykes and Es$fin
lattice can also be fit by Eq7) and the parameters are in- [10] (p. 211, and[11]. Sykes and Essam show that for any
cluded in Table Il. Figures 3 and 4 show the dependence gblane latticeL there is a “matching lattice’L* such that
the percolation threshold on correlation length for cubic lat-
tices with Gaussian and exponential smoothing functions. .
The results for the Laplace-Gaussian smoothing function are Pe(L)+pe(L™)=1. ®
similar.
I_n th? cubic case the percolation threshold depgnds Ofhe square and square 1-2 lattices are matching and the tri-
lattice size, presumably because of the smaller lattices th%anuIar lattice is self-matching.
were used. Nevertheless, for each lattice size the dependence-l-he proof of these results does not depend on the site

of percolation threshold on correlation length can be fit by, .Janilities being i

X ; g independeftt0Q] (p. 213 so Eq.(8) also
Eq. (7). The parameters for the three smoothing functions arg jies 1o correlated lattices. Thus the convolution lattices
given in Tables llI-V. Included in each table are extrapo- i< ssed in this paper must satisfy E8) for all w. For

lated values for an infinite lattice. - - L
. . . .. ercolation thresholds having the form of , this im-
For triangular lattices, the percolation threshold is mde-p g HaD)

. — 0 © .
pendent of correlation length. The best fits to the data givg“es that the limiting valueg, and p; satisfy Eq.(8) and

*) — - -
for e Gaussian smooting i 04970004 and 51, (1) The vlues for e sauare and sauere 1.2
for the Lorentzian smoothing functiop.= 0.497+0.007.

. ; 0 putational errors. For a self-matching lattice, E8).implies
These results can also be fit by Bd) with p;=p;. that p.=1/2 and this holds for allv. Again the simulations

on the triangular lattices satisfy this condition to within com-
IIl. DISCUSSION putational error.

For all of the lattices and smoothing functions reported AS noted above, the asymptotic valpg appears to de-
here, the dependence of percolation threstpeldn correla- pend weakly on lattice type for two-dimensional lattices. All
tion lengthw can be expressed by Ef). This functional of the values ofp; are close to 0.5. However, all values of
form appears to be universal, independent of lattice typep. for the square lattice are somewhat larger than 0.5 while
smoothing function, and even of spatial dimension. If furtherthe value for the square 1-2 lattice is smaller than 0.5. Since
studies confirm this relation, it would indicate that there arethe values ofo; nevertheless satisfy E(), it appears that
very general features underlying correlated percolation, pothe deviations from 0.5 for the square and square 1-2 lattices
tentially a very significant result. are real.
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